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a b s t r a c t

An integrated combustion optimization approach is presented for the combined considering the trade
offs in optimization of coal-fired boiler and selective catalyst reaction (SCR) system, to balance the unit
thermal efficiency, SCR reagent consumption and NOx emissions. Field tests were performed at a 160 MW
coal-fired unit to investigate the relationships between process controllable variables, and optimization
targets and constraints. Based on the test data, a modified on-line support vector regression model was
proposed for characteristic function approximation, in which the model parameters can be continuously
adapted for changes in coal quality and other conditions of plant equipment. The optimization scheme
was implemented by a genetic algorithm in two stages. Firstly, the multi-objective combustion optimi-
zation problem was solved to achieve an optimal Pareto front, which contains optimal solutions for low-
est unit heat rate and lowest NOx emissions. Secondly, best operating settings for the boiler, and SCR
system and air preheater were obtained for lowest operating cost under the constraints of NOx emissions
limit and air preheater ammonium bisulfate deposition depth.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Utilities have a variety of methods for reducing nitrogen oxide
(NOx) emissions from existing boilers, and achieving compliance
with strict federal and state regulations in the US for NOx. These
methods range from low-NOx burner retrofitting to using post-
combustion controls, such as selective catalytic reduction (SCR)
systems. SCR is generally the most expensive method for NOx

emissions control, but is also the most effective. However, strin-
gent state implementation plan (SIP) Call NOx mandates, have
motivated widespread planning for retrofitting approximately
100 GW of coal-fired capacity in the US [1]. NOx SIP Call require-
ments provide incentive for designing and operating SCR process
equipment to consistently achieving 90% NOx removal, in most of
the cases, year-round. Achieving high levels of SCR NOx removal
performance over a long-term period is challenging. Several
investigators have shown how key SCR process variables, such
as flue gas temperature and the level of reagent conditioning af-
fect SCR performance. SCR systems are commonly designed to
work with liquid anhydrous ammonia (NH3) and aqueous NH3,
where the NH3 reacts with the NOx in the flue gas, reducing the
ll rights reserved.

: +1 610 758 5959.
oxides to molecular nitrogen and water. Although, the SCR cata-
lyzed chemical reactions are very efficient, a small portion of
the reagent does not react and leaves the reactor as ‘‘NH3 slip.”
Slippage problems increase as the SCR catalyst ages and the cata-
lyst surface become masked or plugged with fly ash. When this
happens, the required NH3 slip increases, resulting in boiler air
preheater (APH) fouling by ammonium/sulfur salts. Controlling
and mitigating APH fouling is imperative in coal-fired boilers,
since that air handling limitations and corrosion preclude contin-
ued operation of the unit, requiring unit shutdown for APH clean-
ing, with the associated lost in unit availability and financial
losses.

During the last few years, the ever-increasing demand for cost-
efficient power generation and stringer environmental regulation
has motivated implementation of process optimization strategies
in coal-fired power generations. Given that coal is an important ele-
ment in the energy source portfolio in the US, process optimization
for stack emissions reductions and efficiency improvements in coal-
fired boilers plays an important role in minimizing operational &
maintenance (O&M) costs, and maximizing performance and unit
availability. One area that has received significant attention is tun-
ing and optimization of the combustion process for NOx emissions
and unit thermal performance improvement. There is a large list
of reported experiences where combustion optimization has
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http://www.sciencedirect.com/science/journal/00162361
http://www.elsevier.com/locate/fuel


F. Si et al. / Fuel 88 (2009) 806–816 807
proved to be an effective method to reduce NOx emissions, while
mitigating its impact on the net unit heat rate [2]. With the growing
population of SCR systems already retrofitted and projected to be
retrofitted in the US, an expansion of combustion optimization
techniques to include the combined boiler combustion/SCR sys-
tem/APH is worth exploring.

An integrated optimization scheme is proposed for optimal
operation of a coal-fired boiler equipped with a SCR system and
rotating APHs. The optimization approach is based on having avail-
able monitoring tools for measurements of combustion-related
parameters such as excess O2 at the boiler outlet, coal flow rates
overfire (OFA) register positions, etc., as well as SCR performance
efficiency and APH formation of ammonium bisulfate salts (ABS).
The approach is based on modified AOSVR for adaptive learning,
and a GA based on non-dominated sorting GA II (NSGA-II) for
implementation of the multi-objective optimization. A description
of SVMs and the proposed modified AOSVR algorithm is provided,
as well as of the proposed GA algorithm. The approach is built
based on a case study performed at a 160 MW coal-fired boiler, fir-
ing Eastern US bituminous coal and equipped with a two layers
SCR catalyst reactor. Parametric testing was performed at this unit
to develop a representative database that characterize the re-
sponse of NOx emissions, NH3 required conditioning, SCR effi-
ciency, ABS deposition and unit heat rate penalty to changes in
boiler, SCR and APH control settings.

2. Modified AOSVR and genetic algorithms

2.1. Modified AOSVR

Process modeling for boiler optimization is a key component in
an optimization scheme. Modeling methods mainly fall into three
categories: theoretical, data-driven and hybrid. On the basis of
first-principles, combined computational fluid dynamics (CFD)/
chemical kinetics models are useful for simulation and theoretical
analysis [3–5]. Because historical data are available, data-driven
models have become very popular, including classical statistics
methods, such as principle component analysis (PCA), independent
component analysis (ICA) and partial least square (PLS) [6,7], and
modern artificial intelligent (AI) techniques, such as neural net-
work (NN) and fuzzy logic [8–10]. Hybrid methods that involve
first-principles and data-driven techniques have also been re-
ported [11,12].

It is challenging to model the emissions formation process, due
to its nonlinear and time-varying characteristics. A detailed ap-
proach involving first principles is computationally prohibited. AI
techniques often suffer from slow training, local minima and poor
interpretability. Moreover, process relationships for boilers can
change with parameters, such as coal quality, slagging/fouling
deposits and the conditions of the plant firing system, which can
not be directly included in functional relationships due to the ab-
sence of on-line monitoring techniques. This implies that model
accuracy and adaptivity are critical issues to be addressed. A mod-
ification of accurate on-line support vector regression (AOSVR) pro-
vides an avenue adaptive learning for the relationships between
targets and operational variables. AOSVR is a variant of support vec-
tor machines, a supervised learning method universally used to
approximate a multivariate function to any desired degree of accu-
racy [13–15].

2.1.1. SVR
SVR transfers an input space to a high dimension feature space

in which an original nonlinear relationship can be approximated
by a linear function f:

f ðw;xÞ ¼ hw;UðxÞi þ b ð1Þ
where h.,.i is an inner product, b is a threshold, w 2 Rm is a weight
vector, and U is a nonlinear map. Given a set of training samples
fðxi; yiÞg

l
i¼1, under the e-insensitive loss [13], SVR solves:
min
w;b;n;n�
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where C is a regularization constant, and ni and n�i are slack variables
[14]. The dual set of (2) is

max
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where K is a kernel function determined by U, and ai and a�i are the
Lagrange multipliers. The function in (1) becomes

f ðxÞ ¼
Xl

i¼1

hiKðx;xiÞ þ b; hi ¼ ai � a�i ð4Þ
2.1.2. AOSVR
Special optimization algorithms are necessary for SVR. Particu-

larly, sequential minimal optimization is well suited for time-
unvarying batch-wise training [16–18]. However, it is inefficient
for time-varying systems, because the entire training set must be
re-used while a new sample is added. An AOSVR algorithm is an
alternative in which efficient updating of the support vectors is
performed, whenever a new sample is added or an existing sample
is removed [15]. Adding and removing the training set are con-
ducted by Algorithm 1 (incremental) and Algorithm 2 (decremen-
tal), given that the training set is divided into three subsets E, S and
R, where

E ¼ fðxi; yiÞ : jhij ¼ Cg ðerror support vectorsÞ ð5Þ
S ¼ fðxi; yiÞ : 0 < jhij < Cg ðmargin support vectorsÞ ð6Þ
R ¼ fðxi; yiÞ : jhij ¼ 0g ðremaining samplesÞ ð7Þ

Algorithm 1. An incremental algorithm given a new sample
(xnew,ynew)

1. Set hc = 0.
2. Choose Dhc according to [15].
3. Update the hi of all samples and simultaneously update E, S and

R.
4. If (xnew,ynew) R E [ S, then return to Step 2.
Algorithm 2. An decremental algorithm given an existing sample
(xold, yold)

1. If (xold, yold) 2 R, then remove it and stop.
2. If (xold, yold) R R, then remove it and start a circle in a reverse

direction of Algorithm 1 that ends until its coefficient reduces
to zero and the Karush–Kuhn–Tucher conditions [14] are still
satisfied in the remaining samples.



808 F. Si et al. / Fuel 88 (2009) 806–816
2.1.3. Modified AOSVR
An original AOSVR model is adaptively updated by continuously

adding a new sample or removing an existing sample. The first-in-
first-out (FIFO) sample updating is sufficiently enough and reason-
able for time series prediction and it has performed well in many
applications [15]. However, the FIFO criterion can not work well
when the new sample inputs are possibly controlled in a limited
range, when a system continuously runs at certain conditions.

For the purpose of improvement, consider a subset of training
samples with similar inputs

D1 ¼ fðxi; yiÞ : kxi � xnewk < a; i ¼ 1; . . . Ng ð8Þ

where a is a threshold. Another choice is

D2 ¼
\m
j¼1

fðxi; yiÞ : jxi;j � xnew;jj < ajg ð9Þ

where aj is the threshold for component j of an input vector. Input
components are differentiated in D2, at the expense of an added
computing load. The subset D1 or D2 rather than the entire training
set will be checked to obtain the sample to be removed. Specifically,
a new sub-FIFO criterion is defined as follows: If D1/D2 is empty,
then no sample is removed and otherwise the oldest sample in
D1/D2 is removed.

2.2. Genetic algorithms

A multi-objective optimization (MOO) problem can be formu-
lated as:

min f ðxÞ ¼ ½f1ðxÞ; f2ðxÞ; . . . ; fkðxÞ�
s:t: gðxÞ 6 0
hðxÞ ¼ 0

ð10Þ

where x = [x1, x2, . . . , xn]T is a vector of decision variables in the
decision space X, fi:Rn ? R is an objective function, i = 1, 2, . . . , k,
and g(�) and h(�) are the inequality and equality constraint vectors.
The MOO problem is defined to find the particular set, x* 2 X, which
satisfies both constraints and yields the optimal values of all objec-
tive functions. Since there is rarely a single point that simulta-
neously optimizes all object functions, a Pareto optimum is
defined to look for trade-offs in these objectives. In this case,
x* 2 X is Pareto optimal, given any x 2 X, fi(x*) 6 fi(x), "i, and $j with
fj(x*) < fj(x), and j 2 {1, 2, . . . , k}. The Pareto optimal set is
S = {x 2 X:x is Pareto optimal} and the Pareto front is F = {f(x):x 2 S}.

Boiler optimization, specifically, for combined combustion and
SCR system, involves multi-objectives. To deal with this MOO
problem, multiple objectives can be converted into a single com-
posite function, by assigning weights to each objective or by keep-
ing only one objective, while putting the remainder into the
constraint set. As an alternative, a representative subset can be
determined in which optimal solutions are non-dominated to each
other [19].

Evolutionary algorithms (EAs) are stochastic optimization
methods inspired by the theory of evolution [20,21]. The process
of natural evolution is simulated in an EA. A genetic algorithm
(GA) is a heuristic search that derives its behavior from the natural
selection theory. GAs and EAs have shown to be powerful and
effective optimization methods for many real applications
[22,23]. A vector evaluated algorithm was first used to solve
MOO problems by Schaffer [24], and then several GA algorithms
were developed with different strategies within the algorithms,
such as the fitness assignment procedure, elitism and diversity
mechanism [25]. The niched Pareto genetic algorithm (NPGA)
was proposed to find the Pareto optimal set [26], in which a larger
number of individuals are involved in competition. The non-dom-
inated sorting genetic algorithm (NSGA) was proposed by Srinivas
et al. [27] to find multi-Pareto-optimal solutions. An improved var-
iant, NSGA-II, was presented by Deb et al. [28] (see Algorithm 3). In
NSGA-II, the fast non-dominated sorting (FNS) is used to achieve a
higher efficiency. The crowded tournament selection operator is
used to preserve the diversity among non-dominated solutions,
which can be described as: for solutions in the same non-domi-
nated front, the solution with larger crowding distance is the win-
ner. This avoids tuning of some parameters, usually not an easy
task due to their complex interactions. Elitism is also introduced
to generate a new parent population through selecting individuals
from the combined population of the current parent population
and its child population.

Algorithm 3. Non-dominant sorting genetic algorithm II (NSGA-II)

1. Set t = 0 and start with a random initial population Pt of size N.
2. Create an offspring population Qt of size N by crossover and

mutation.
3. Combine Pt and Qt into Rt = Pt [ Qt.
4. Apply the FNS method and identify non-domination fronts F1,

F2, . . . , Fk in Rt.
5. Assign fitness according to the crowing distance.
6. Select individuals for Pt+1. For i = 1, 2, . . . , k, run: if
jPt+1j + jFij 6 N, then Pt+1 = Pt+1 [ Fi and otherwise add the first
(N � Pt+1) solutions of Fi to Pt+1.

7. Apply crossover and mutation to Pt+1 for a new offspring Qt+1.
8. Return if the stopping condition is satisfied, otherwise t = t + 1

and go to Step 3.
3. Unit testing

3.1. Unit description

An optimization scheme, based on AOSVR for adaptive learning
and GAs for constrained optimization, was applied to field test data
obtained from a 160 MW coal-fired utility boiler. Field data were
acquired from a parametric test program performed at a 160 MW
coal-fired boiler. The test boiler is of a tangentially fired combustion
engineering (CE) design, equipped with a low-NOx concentric firing
system (LNCFS) level III. The LNCFS-III system consists of four eleva-
tions of burners arranged in corners. Fig. 1 displays a diagram of the
test unit. Four pulverizers (1A1, 1B2, 1A3 and 1B4, from top to bot-
tom) supply coal to the burner system, one mill per elevation. The
windbox compartment at each corner is composed of coal air regis-
ters for tertiary air (coaxial with the burner nozzle), auxiliary air
registers and concentric fire system (CFS) air registers that are used
to divert combustion secondary air at an offset, with respect to the
burner centerline. In addition to the mentioned secondary air ports,
the LNCFS-III arrangement incorporates OFA in two sets of registers,
a two-level close-couple overfire air (CCOFA) register set, and a sep-
arated OFA (SOFA) compartment above the burner zone with three-
level registers. All the burner buckets and CCOFAs are connected to
tilt in unison for controlling of steam temperatures. The SOFA com-
partments are also tiltable for combustion staging.

The test boiler is equipped with a 2-layer, anhydrous NH3-based
SCR system, with a total catalyst volume of 164 m3 for additional NOx

control. The SCR system is equipped with NOx analyzers at the inlet
and outlet of the reactor, and an ABS monitoring sensor, manufac-
tured by Breen Energy Inc. The Breen Energy’s AbSensor – AFP is a
probe that measures the conduction of electrical current across the
probe’s tip that results from condensed hydrated ammonium bisul-
fate. The instrument reports both the ABS formation and evaporation
temperature via OLE for process control (OPC). The rest of the boiler
back-end configuration includes two rotating APHs with air bypass
dampers, an electrostatic precipitator for particulate removal, and
a flue gas desulphurization unit.



Fig. 1. Schematic of test unit.
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3.2. Parametric field tests

Parametric field tests were performed at the test unit, with data
collected at different combinations of boiler firing system, SCR and
APH operational settings, at steady-state conditions. All tests were
performed at full load, which was appropriate for this unit, since it
is a base-loaded unit. The parameters used for testing and their
available operating ranges are included in Table 1. Economizer ex-
cess O2, was used as an indication of the amount of excess air fed to
the boiler, the average of the top and middle SOFA register open-
ings was used as an indication of combustion staging. Additionally,
the average burner and tilt angles, and the coal flow rate to the top
1A1 mill were included in the parametric list to characterize the
relationship between boiler control settings and boiler outlet or
SCR inlet NOx and unit thermal performance. Other parameters
used to characterize the parametric relationships at the SCR and
APH include the NH3 flow rate and the APH bypass damper posi-
tion, respectively. The parametric testing was conducted by chang-
ing individual parameters at a time, while keeping the setpoints of
the other parameters constant during each test period. A total of 80
parametric tests were performed at full unit load. These tests were
performed according to a design of experiment based on the num-
ber of input parameters. During testing, each parameter in Table 1
Table 1
Parametric list.

No. Symbol Variable description

1 O2 Excess O2

2 SOFA Average top SOFA opening
3 aST SOFA tilt
4 aBT Burner tilt
5 Fcoal Coal flow rate of top mill
6 NH3 Ammonia flow rate
7 DAPH APH bypass damper position

Table 2
Ash analysis data.

Samples 1 2 3 4 5 6

LOI (%) 2.9 3.3 2.8 2.4 2.2 2.7
Amonnia in ash (mg/kg) 64.7 179.0 67.7 51.0 49.6 42.7
Samples 15 16 17 18 19 20
LOI (%) 3.9 2.6 2.5 2.7 1.6 3.5
Amonnia in ash (mg/kg) 39.9 27.5 27.7 19.6 10.4 16.9
was changed within a reasonable range and a database of pertinent
data was acquired from the plant PI system at a sampling rate of
each minute. Fly ash was sampled for each test run and analyzed
off-line for unburned carbon or loss on ignition (LOI). For some
of these ash samples, ammonia in ash was also determined by
analysis. Results are listed in Table 2. Data on SCR inlet and outlet,
and SCR efficiency (defined as the normalized NOx reduction across
the SCR with respect to the inlet NOx), main steam and hot reheat
steam temperatures, attemperating flow rates, flue gas and air
temperatures across the different equipments in the convective
pass, and fly ash unburned carbon level were acquired for each test
point. Indication of the net unit heat rate penalty for each test
point, or combination of test parameters, with respect to design
conditions, was provided by a heat and mass balance model of
the unit [29].

During parametric testing, a unit outlet NOx emissions con-
straints of 7 mg/MkJ was used. Additionally, another constraint
was imposed at the APH that consisted of maintaining the ABS
deposition location at the APH at 0.76 m from the cold-end. This
location setpoint was chosen based on the known penetration dis-
tance of the APH sootblowers, which are located at the outlet of the
APH. Any deposition of sticky ABS deposits on the metal surface of
the APH baskets, beyond the chosen deposition setpoint, would not
Unit Upper limit Lower limit

% 4.0 2.5
% 100 0
Deg. 25 �15
Deg. 1 �15
t/h 19 0
kg/h 250 0
% 100 0

7 8 9 10 11 12 13 14

3.6 2.3 4.4 3.8 2.7 2.5 3 5.2
50.3 26.0 39.1 24.8 37.9 39.6 27.0 36.8
21 22 23 24 25 26 27 28

3 3.2 3.3 3.2 3.5 3.3 5.4 10.9
20.1 22.5 20.3 16.8 19.8 17.9 20.7 62.9
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Table 3
Prediction performance of different SVR models.

Batch-wise SVR AOSVR(sub-FIFO)

MAE 9.92 1.65
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be removed by sootblowing, increasing the risk of gradual fouling
of the APH and loss of generation for APH washing [30]. The ABS
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deposition distance was calculated using the measured AbSensor
evaporation temperature and an estimated APH metal temperature
profile calculated from the code reported by Sarunac et al. [31]. The
axial location of the APH metal temperature profile at which the
metal temperature is equal to the ABS formation temperature
establishes the ABS deposition distance from the APH cold-end.
Two options are available when the ABS deposition distance is be-
yond the reach of the sootblowers (exceeds the 0.76 m setpoint),
viz. to lower the NH3 injection rate to the lowest conditioning per-
mitted to achieve the required outlet NOx level, or manipulate the
APH air bypass damper to increase the metal temperatures. Open-
ing the APH bypass damper is the least preferred option, since it re-
sults in heat rate penalties, due to the increase in the flue gas
temperature exiting the boiler.

4. Results and discussion

4.1. Process models

AOSVR was used to built functional relationships between the
boiler outlet or SCR inlet NOx level and heat rate penalty (with re-
spect to the design heat rate level), and the five boiler parameters
included in Table 1 (O2, SOFA, aST, aBT and Fcoal). To demonstrate
the adaptive ability of the SVR technique, three models were stud-
ied: batch-wise SVR, conventional AOSVR based FIFO, and modified
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AOSVR based sub-FIFO. The three models were initially trained
with the database obtained from the parametric tests, and then
adaptively updated based on real time data sets. In this demonstra-
tion, 4000 continuous samples were acquired from the real process
at a 1-min sample rate. In comparison to the batch-wise SVR,
where there was no updating present, the other two models were
continuously updated with every new sample. The results from the
three methods for the relationship between average SOFA and SCR
inlet NOx emissions rate is shown in Fig. 2. The batch-wise SVR
kept the relationship learned from the parametric tests, un-
changed. Although, both AOSVR models were continuously regu-
lated to include the new relationship existing with the new
samples, the conventional AOSVR based FIFO produced a wrong
trending.

The prediction performance of the batch-wise SVR and the
proposed AOSVR based sub-FIFO model were further compared.
Table 3 shows the predicted performance for every model, using
a mean absolute percentage error (MAE) as the validation criterion,
which is defined as:

MAE ¼ 1
n

Xn

i¼1

jyi � yi

_
j

yi
� 100% ð11Þ

where n is the sample size, yi denotes the sample data, and yi

_
is the

modeling output value. The batch-wise SVR exhibited the worse
performance for NOx emissions prediction, because the operational
conditions were quite different than those used during the field
testing. Fig. 3 shows a detailed profile of predicted values up to
the 4000-min. Biases in Fig. 3a result from the difference in operat-
ing conditions and coal quality between the test conditions and
those in the real process. These biases were compensated by adopt-
ing new samples to the training set in the adaptive learning mode,
as shown in Fig. 3b.

The modified AOSVR based on the sub-FIFO model was chosen
to develop two robust models respectively for SCR inlet NOx and
unit heat rate penalty. Both models were trained based on the field
datasets. The model parameters were set as follows: the Gaussian
kernel function with a width of 1.0, and the e-insensitive loss func-
tion with e = 0.05, and C = 100. The optimization scheme was
implemented based on the trained models. Figs. 4a and 4b show
trend results obtained with the trained AOSVR models for SCR inlet
NOx and heat rate penalty, respectively.

4.2. Optimization models

The constrained optimization problem for optimal operation of
the combined boiler/SCR/APH was performed in two steps. In the
first step, a GA was used to obtain a functional relationship be-
tween the lowest (or optimal) achievable heat rate penalty and
boiler outlet or SCR inlet NOx. This is a classic constrained multi-
objective optimization problem, which was defined by

min NOx ¼ fNOx ðO2; SOFA;aST;aBT; FcoalÞ
min q ¼ fqðO2; SOFA;aST;aBT; FcoalÞ
s:t: h ¼ fhðO2; SOFA;aST;aBT; FcoalÞ 6 hmax

O2;min 6 O2 6 O2;max

SOFAmin 6 SOFA 6 SOFAmax

aST;min 6 aST 6 aST;max

aBT;min 6 aBT 6 aBT;max

Fcoal;min 6 Fcoal 6 Fcoal;max

ð12Þ

where fNOx ð�Þ and fq(�) are the objective functions between the
five boiler operating variables listed in Table 1, and boiler outlet
NOx emissions and heat rat penalty, q, respectively. fh(�) is the
function that describes the functional relationship between fly
ash unburned carbon level and the boiler control settings. The
optimization was constrained by fly ash unburned carbon to be
below a prescribed maximum of 4%, and the operating input
parameters to be between minimum and maximum levels, repre-
senting their operational upper limit and lower limit indicated in
Table 1.
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Fig. 4b. Incremental analysis results of the trained AOSVR models for heat rate penalty.
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The second step of the optimization consisted of minimizing an
overall cost function that combines the costs of: (1) the heat rate
penalty from the boiler side, due to a combination of boiler con-
trols settings to achieve a particular boiler outlet or SCR inlet
NOx emissions rate; (2) the cost of NH3 to produce the maximum
SCR performance to achieve a target NOx reduction; and (3) the
heat rate penalty to operate the APH within the ABS deposition
constraint. Savings due to avoidance of APH washes was not in-
cluded in the cost function to be optimized. The second step opti-
mization, performed with a GA was defined by

min Ctotal ¼ k1C1ðNOxÞ þ k2C2ðNH3Þ þ k3C3ðDAPHÞ
s:t: d ¼ gdepthðNOx;NH3;DAPH; SO2; Tgas; inlet; Tgas; outlet; Tair; inlet; Tair; outletÞ 6 adepth

NOx;outlet 6 aNOx ;limit

NOx;min 6 NOx 6 NOx;max

NH3;min 6 NH3 6 NH3;max

DAPH;min 6 DAPH 6 DAPH;max ð13Þ

where the total cost Ctotal is composed of the fuel cost, C1, due to the
boiler heat rate penalty contribution (obtained from the results of
the optimization of Step 1) on optimum unit heat rate from Eq.
(12), the ammonia injection cost, C2, and the heat rate penalty cost,
C3, due to the manipulation of the APH bypass damper (DAPH).
The coefficients ki, i = 1,2,3 were set with a value of 1.0. The gdepth(�)
is the constraining functional relationship between pertinent
operating variables and the deposition depth, which was set
<adepth = 0.76 m. The unit outlet NOx emissions rate was constrained
at < aNOx ;limit ¼ 7 mg/MkJ.

For the cost function, a functional relationship for the lowest
NH3 injection flow rate required as a function of SCR inlet NOx

was obtained from the parametric test data. Fig. 5 shows this rela-
tionship. At the lowest reagent conditioning, the highest SCR effi-
ciency results, while maintaining the unit outlet NOx emissions
at the constrained limit. The minimal NH3 vs. SCR inlet NH3 curve
shows a rapid increase when the SCR inlet NOx level exceeds the
110 mg/MkJ level, which is characteristic of the catalyzed NOx

reduction process in the SRC reactor. Maintaining the NH3 injection
rate with the same slope as the one used for low NOx levels
(<110 mg/MkJ) would result in violation of the NOx emissions
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Table 4
Selected solutions for the final generation.

O2 (%) SOFA (%) Fcoal (t/h) aBT (�) aST (�) NOx (mg/MkJ) DHR (kJ/kWh)

2.51 60 6.0 �10 24 72.3 90.3
2.61 60 6.0 �10 15 73.2 67.4
2.70 60 6.0 �10 4 75.3 48.7
2.52 60 6.0 �9 �13 77.5 37.6
2.87 60 6.0 �9 �15 79.5 32.0
2.83 49 6.0 �8 �15 81.6 31.7
2.87 35 6.0 �6 �15 85.8 30.8
2.86 21 6.0 �5 �15 90.3 30.2
2.88 10 6.0 �4 �15 94.5 29.7
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constraint. Furthermore, this increase in reagent for elevated SCR
inlet NOx levels is what increases the risk of NH3 slip and, subse-
quent formation of ABS in the actual SCR system.

Additionally, for the cost function, the relationship between
APH air bypass damper and unit heat rate penalty was obtained
from field testing at different bypass damper opening positions,
resulting in different APH metal temperature profiles, and ABS
deposition depths with respect to the ABS deposition location set
point. Fig. 6 shows ABS depths vs. APH bypass damper position.
Also included in Fig. 6 is the accompanying heat rate deviation or
penalty associated with the opening of the APH bypass damper, be-
cause of the increase in APH outlet gas temperature.

4.3. Optimization results

Using the AOSVR trained models, fNOx ð�Þ; fqð�Þ and fh(�), the opti-
mization problem expressed by the Set (12) was solved by the
NSGA-II method [28]. The model parameters were set as: popula-
tion size, 240; crossover probability, 0.9; mutation probability,
0.1 and maximum generation, 30. Fig. 7a–d shows feasible solu-
tions for the Set (12) and the set of optimal combination of boiler
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NOx emissions rate and heat rate deviations are listed in ascending
order of SCR inlet NOx.

The optimization problem expressed by the Set (13) was
solved by another NSGA-II model with the following settings:
population size, 180; crossover probability, 0.9; mutation proba-
bility, 0.1; and maximum generation, 22. The cost function was
evaluated using the following rates: generation power cost of
$0.02/kwh and ammonia reagent cost of $0.55/kg, to convert
the objective function to units of dollars per hour. Fig. 8a and b
shows a 3D map of all searched solutions by the GA. Also, in-
cluded in Fig. 8a and b are the sets of SCR inlet NOx, NH3 injection
rate and APH bypass damper positions that violate the ABS depo-
sition distance constraint and the NOx emissions rate limit. The
set of feasible solutions, which satisfy both constraints in Set
(13) are also shown in Fig. 8a and b. These solutions correspond
to the optimal GA Pareto, 22th generation, which was imple-
mented for the lowest operation cost. Fig. 8a clearly shows on
the z-axis that a low NH3 injection rates the outlet NOx emissions
limit constraint is violated, while at high NH3 injection rates the
ABS deposition constraint is violated. Optimal solutions that



Table 5
Optimal solutions as a function of APH ABS deposition depth.

No. adepth (m) O2 (%) SOFA (%) Fcoal (t/h) aBT (�) aST (�) NOx (mg/MkJ) NH3 (kg/h) DAPH (%) gSCR (%) DCtotal ($/h) C1 ($/h) C2 ($/h) C3 ($/h)

1 0.76 2.82 52.0 6.0 �8.4 �13.7 80.6 56.7 0.0 91.3 41.2 10.1 31.2 0.0
2 0.73 2.90 50.7 6.0 �7.7 �14.9 81.7 57.5 6.0 91.4 48.9 9.9 31.6 7.5
3 0.70 2.84 50.4 6.0 �8.0 �13.4 81.1 57.0 12.6 91.4 55.2 9.9 31.4 13.9
4 0.67 2.85 42.8 6.0 �6.7 �15.0 83.5 58.7 18.9 91.6 60.5 9.4 32.3 18.8
5 0.64 2.85 42.9 6.0 �6.7 �15.0 83.4 58.6 25.2 91.6 64.3 9.5 32.2 22.6
6 0.61 2.97 40.1 6.0 �6.1 �15.0 85.1 59.7 31.1 91.8 67.4 9.1 32.9 25.5
7 0.58 2.85 50.5 6.0 �8.2 �15.0 81.3 57.2 37.4 91.4 69.5 9.9 31.5 28.1
8 0.55 2.52 60.0 6.0 �9.0 �13.0 77.4 54.3 42.7 91.0 72.2 12.2 29.9 30.2
9 0.52 2.92 41.2 6.0 �7.3 �15.0 84.1 59.1 48.7 91.7 74.2 9.3 32.5 32.4
10 0.49 2.87 60.0 6.0 �9.5 �14.7 79.3 55.7 54.3 91.2 76.0 10.6 30.7 34.8
11 0.46 2.94 34.3 6.0 �5.3 �15.0 86.6 60.8 59.5 91.9 79.3 8.7 33.4 37.2
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satisfy both constraints are obtained in the NH3 flow rate range
between 55 and 90 kg/h.

The optimal solution for to the lowest cost of compliance corre-
sponds to the following control setting: O2 = 2.82%, average SOFA
register opening = 52.0%, NH3 injection rate = 56.7 kg/h, average
burner tilt angle = �8.4�, average SOFA tilt angle = �13.7�. This
combination of settings will result in NOx emissions at the boiler
outlet of 80.6 mg/MkJ, while complying with the unit outlet NOx

limit, ABS deposition of less than 0.76 m and fly ash unburned car-
bon below 4%, at a differential cost of $41.2/h. Table 5 shows differ-
ent optimal solutions corresponding to different APH ABS
deposition depths. The total cost of compliance increases as the
ABS deposition distance is tightly set closer to the APH cold-end.
A reduction in the ABS deposition depth setpoint below 0.76 m
would require opening of the APH bypass damper, with associated
heat rate penalty from this component of the cost function. Fig. 9
shows the resulting costs associated with operation a optimal com-
binations of boiler control settings that result in a range of boiler
outlet NOx emissions levels. It is clearly seen in Fig. 9 that the con-
trol of ammonia flow rate should be the first approach to limit the
cost function to the point where the boiler heat rate penalty in-
creases. Allowing the boiler outlet or SCR inlet NOx to increase
without control would result in additional NH3 consumption and
the need to open the APH bypass damper for ABS deposition con-
trol, with its associated cost increase due to the APH heat rate
penalty.

5. Conclusions

Process optimization is a cost-effective approach to maximize
profits in fossil-fired boiler, while meeting environmental limits.
In coal-fired boilers equipped with SCRs, this is a classic multi-
objective optimization problem to balance efficiency, NOx emis-
sions and maintenance. The models of real processes are the
important basis for optimization schemes which are often influ-
enced by complicated mechanisms, nonlinear time-varying charac-
teristics, variable coal quality and cleanness of boiler heat transfer
surfaces.

In this paper, a modified AOSVR model is proposed with a mod-
ified removing criterion, to decide the right samples before includ-
ing them in the training. A field case study revealed the validity of
this approach and its performance in both the prediction and func-
tion approximation by adaptive learning for adaptation to operat-
ing conditions variation.

An optimization model, based on the NSGA-II algorithm is used
to solve the constraint optimization problem, which was imple-
mented in two stages. In the first stage, feasible optimal solutions
were obtained from a Pareto front, including the given optimal tar-
gets and the corresponding settings of control parameters. Lowest
operation cost was achieved by the second stage optimization,
which considers the unit heat rate penalty, as well as the cost of
ammonia reagent.
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